首页> 外文OA文献 >Descriptor transition tables for object retrieval using unconstrained cluttered video acquired using a consumer level handheld mobile device
【2h】

Descriptor transition tables for object retrieval using unconstrained cluttered video acquired using a consumer level handheld mobile device

机译:用于使用消费级手持移动设备获取的不受约束的杂乱视频进行对象检索的描述符转换表

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Visual recognition and vision based retrieval of objects from large databases are tasks with a wide spectrum of potential applications. In this paper we propose a novel recognition method from video sequences suitable for retrieval from databases acquired in highly unconstrained conditions e.g. using a mobile consumer-level device such as a phone. On the lowest level, we represent each sequence as a 3D mesh of densely packed local appearance descriptors. While image plane geometry is captured implicitly by a large overlap of neighbouring regions from which the descriptors are extracted, 3D information is extracted by means of a descriptor transition table, learnt from a single sequence for each known gallery object. These allow us to connect local descriptors along the 3rd dimension (which corresponds to viewpoint changes), thus resulting in a set ofvariable length Markov chains for each video. The matching of two sets of such chains is formulated as a statistical hypothesis test, whereby a subset of each is chosen to maximize the likelihood that the corresponding video sequences show the same object. The effectiveness of the proposed algorithm is empirically evaluated on the Amsterdam Library of Object Images and a new highlychallenging video data set acquired using a mobile phone. On both data sets our method is shown to be successful in recognition in the presence of background clutter and large viewpoint changes.
机译:从大型数据库中对对象进行视觉识别和基于视觉的检索是具有广泛潜在应用程序的任务。在本文中,我们提出了一种适用于视频序列的新颖识别方法,该方法适用于从高度不受约束的条件(例如:使用移动消费者级别的设备(例如电话)。在最低级别上,我们将每个序列表示为密集堆积的局部外观描述符的3D网格。虽然图像平面的几何形状是通过从中提取描述符的相邻区域的大量重叠来隐式捕获的,但是3D信息是通过描述符转换表提取的,该表是从每个已知画廊对象的单个序列中获悉的。这些使我们能够沿第3维(对应于视点变化)连接局部描述符,从而为每个视频生成一组可变长度的马尔可夫链。两组这样的链的匹配被公式化为统计假设检验,从而选择每组的子集以最大化相应视频序列显示相同对象的可能性。在阿姆斯特丹的对象图像库和使用手机获取的具有高度挑战性的新视频数据集上,经验地评估了所提出算法的有效性。在这两个数据集上,我们的方法都被证明在存在背景杂波和较大视点变化的情况下能够成功识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号